
New Approaches to the Identification of Dependencies between Requirements

Ralph Samer
Graz University of Technology

Graz, Austria
rsamer@ist.tugraz.at

Martin Stettinger
Graz University of Technology

Graz, Austria
martin.stettinger@ist.tugraz.at

Muesluem Atas
Graz University of Technology

Graz, Austria
muatas@ist.tugraz.at

Alexander Felfernig
Graz University of Technology

Graz, Austria
alexander.felfernig@ist.tugraz.at

Guenther Ruhe
University of Calgary

Calgary, Canada
ruhe@ucalgary.ca

Gouri Deshpande
University of Calgary

Calgary, Canada
gouri.deshpande@ucalgary.ca

Abstract—There is a high demand for intelligent decision
support systems which assist stakeholders in requirements
engineering tasks. Examples of such tasks are the elicita-
tion of requirements, release planning, and the identification
of requirement-dependencies. In particular, the detection of
dependencies between requirements is a major challenge for
stakeholders. In this paper, we present two content-based
recommendation approaches which automatically detect and
recommend such dependencies. The first approach identifies
potential dependencies between requirements which are de-
fined on a textual level by exploiting document classification
techniques (based on Linear SVM, Naive Bayes, Random Forest,
and k-Nearest Neighbors). This approach uses two different
feature types (TF-IDF features vs. probabilistic features). The
second recommendation approach is based on Latent Semantic
Analysis and defines the baseline for the evaluation with a real-
world data set. The evaluation shows that the recommendation
approach based on Random Forest using probabilistic features
achieves the best prediction quality of all approaches (F1: 0.89).

Keywords-Requirements Engineering, Content-based Recom-
mender Systems, Machine Learning

I. INTRODUCTION

Recommender Systems (RS) are decision support systems
which help users to select a well-collected set of items
matching their needs and preferences [1], [15]. Nowadays,
these systems are applied in many well-known domains such
as books, movies, or songs. In more complex domains such
as Requirements Engineering (RE), there is a high demand
for applying RS to support stakeholders [9], [12]. RS can
support stakeholders in different RE tasks such as, require-
ments definition/elicitation, release decisions, stakeholder
identification, and dependency detection [12], [14].

Usually, a software project consists of hundreds of differ-
ent requirements which are often related to each other. Single
requirements elicitation methods such as interviews [5] are
considered effective, but do not scale up for the elicita-
tion of dependencies. The identification of dependencies
between the requirements is a cognitively challenging and
time consuming task which requires the use of intelligent

methods [11], [12]. The traditional method, where stake-
holders detect requirement-dependencies manually, entails a
high risk of project failure, since stakeholders are often not
aware of the latest changes regarding the set of requirements.
In addition, stakeholders have to understand the domain-
specific content of each requirement which is also very time-
consuming. Missing or incorrect dependencies will result in
release plans that require additional effort for their imple-
mentation [16]. There exist different types of requirement-
dependencies such as includes, excludes, and requires. In
particular, requires is known to be the most frequently
occurring dependency type in the context of RE [10]. The
identification of requires-dependencies is essential for a
project, because the late discovery of these dependencies
can lead to negative consequences such as increased costs
or unfulfilled deadlines. In order to increase the quality of
software release planning, more sophisticated approaches
are needed. Therefore, we developed two content-based
recommendation approaches which support stakeholders in
the identification of such dependencies.

In the context of dependency recommendation, there
exists some related work [3], [7]. The work of Chitchyan
et al. describes an NLP-based approach which assists in the
identification of dependencies between requirements on a se-
mantic level [4]. Ninaus et al. [14] present an RE tool which
applies recommendation techniques to support stakeholders
in RE tasks. Their tool also includes a basic dependency RS
which recommends similar requirements that are treated as
potential dependencies. Atas et al. [2] presents an approach
to automatically identify requirement-dependencies of type
requires by using supervised classification techniques.

Having a high prediction quality is crucial for effectively
supporting stakeholders. Our major research goal is to fur-
ther improve the prediction quality of dependency detection
compared to existing approaches. Our recommenders follow
the objective to provide decision support to domain experts
in the task of dependency elicitation. The major contribu-
tions of this paper are the following. The work presented in



this paper extends the basic approach of Atas et al. [2] and
enriches it with new feature types and a new classification
approach based on aspects from the area of Information
Theory. In contrast to Atas et al. [2] and Ninaus et al. [14],
our work uses (1) enhanced methods that achieve higher
prediction quality and (2) a recommendation environment
based on the developed classification approaches. We also
provide a new dataset which can be used as baseline for
related comparisons. The evaluation results indicate that
our developed approaches are able to reliably identify de-
pendencies between requirements. In particular, the results
reveal that our content-based RS based on Random Forest
classification achieves a high prediction quality.

The remainder of this paper is structured as follows. In
Section II, we explain the structure of the used dataset
and the design of an empirical study to manually detect
the requirement-dependencies included in the dataset. Sec-
tion III presents the used pre-processing and feature extrac-
tion techniques. In Section IV, we introduce approaches to
automatically detect and recommend dependencies between
requirements. An experimental evaluation of our content-
based RS and a short discussion of the evaluated results is
provided in Section V. Finally, we conclude the paper and
provide a brief outlook towards future work in Section VI.

II. USER STUDY & DATASET

We used a dataset1 which consists of 30 software and
hardware requirements as well as of 51 dependencies that
exist between these requirements. The requirements were
related to the development of a sports watch and have been
defined in cooperation with software development compa-
nies (industry partners). The industry partners are experts
with longstanding experience and practical knowledge in the
RE domain. Each of the defined requirements consists of
an id, a title, and a textual description (in German). We
conducted a user study in a software engineering course
with N=182 computer science students and asked them to
manually detect dependencies of type requires. A requires-
dependency for an ordered requirement pair (rx, ry) is a
unidirectional dependency which indicates that rx requires
ry (denoted as: rx → ry). This statement does not imply
that ry also requires rx. However, it is important to mention
that our work only focuses on the prediction of a requires-
dependency but not on the prediction of its direction.

The major aim of our user study was the complete
detection of all dependencies for the predefined set of
requirements. For the purposes of the user study, a set of
30 requirements was presented to each participant. In order
to avoid biasing effects [13], a randomly ordered list of
these 30 requirements was shown to each participant. The
identified dependencies were used for training and testing
of our content-based RS. Considering the direction of the

1http://openreq.ist.tugraz.at:8080/OpenReq dataset.zip

requires-dependencies, the number of possible dependencies
is
(
30
2

)
∗2 = 870. In order to obtain a complete dataset and a

profound ground truth basis to train our RS, we reviewed and
combined the most frequently reported dependencies with
the dependencies of an example solution from 7 experts of
our industry partners. We cleaned the dataset in collaboration
with these RE experts in order to train the RS with the
correct dependencies. Thereby, also less frequently reported
(but correct) dependencies could be found and were included
in the final dataset. This way, a complete dataset could
be derived which represents a ground truth that assures
completeness, preciseness, and clearness of the data.

Table I provides a brief overview of the dependencies
reported by the experts and the study participants. The study
results show that the 182 participants stated 657 different
dependencies. Our 7 experts stated 38 dependencies and
found more unique dependencies (5.43) on average than the
participants (3.61). In order to obtain a final solution from
the collected data, we took the 20% of the students’ most
frequently reported dependencies (131) and combined them
with the 38 dependencies reported by the experts. Consid-
ering the intersection of both sets, there was an overlap of
35 dependencies. We analyzed (together with the experts)
the remaining part of the non-overlapping dependencies
((657 − 35) + (38 − 35) = 625) reported by the students
and the experts. This way, another 16 dependencies could
be obtained which were added to the set of 35 overlapping
dependencies. The final dataset consists of 51 requires-
dependencies (35 + 16 = 51) and 30 requirements.

Table I
DEPENDENCIES FOUND BY EXPERTS AND STUDENTS.

Reported Dependencies
Group Persons Amount Average
Study Participants 182 657 3.61
Experts 7 38 5.43

Overlap 35 -
Additionally added 16 -

Finally selected 51 -

III. PREPROCESSING & FEATURE EXTRACTION

Before the system could be trained and tested, the records
of the final dataset had to be prepared and converted into a
format which is suitable for a recommender system based
on Machine Learning. For the preprocessing of our dataset,
we first tokenized the title and the description of each
requirement into proper linguistic units (bag of words).
Thereafter, we removed stop words and special characters,
merged synonyms, and applied lemmatisation.

A. Extraction of TF-IDF Features

For every token the term frequency-inverse document
frequency (TF-IDF) was determined. After the calculation
of the TF-IDF values, tokens which do not contain any

http://openreq.ist.tugraz.at:8080/OpenReq_dataset.zip


valuable information were removed. In our approach, the
TF-IDF value was calculated for single (i.e, uni-gram) and
adjacent tokens (i.e., n-grams). Then, TF-IDF values were
combined into a single vector v for a requirement pair
(rx, ry). Formula 1 provides a formal representation of the
feature vector v whereby each TF-IDF value of a n-gram
token is wrapped in a separate mathematical set (see curly
brackets) and these sets are then merged with each other by
using the union operator ”∪”.

v(rx, ry) =
⋃

i∈ngrams(rx)

{TFIDF (i)} ∪

⋃
j∈ngrams(ry)

{TFIDF (j)}
(1)

B. Extraction of Probabilistic Features
As an alternative feature representation, we also used fea-

tures which take aspects from the area of Information Theory
into account [8]. In the remainder of this paper, we call
these features probabilistic features. We used probabilistic
features as an alternative to TF-IDF features, since they
reflect statistical correlations between the words and provide
more precise descriptions of the word-based similarity of the
requirement pairs. For each pair (rx, ry), we created features
that express correlations between the words from the title
and the description of a requirement. We created features
which are based on the co-occurrences of words. These
features are counted values that reflect the number of words
which both requirements share in common. Further, we also
introduced probabilistic values as additional features. The
probabilistic values are computed by using the Pointwise
Mutual Information (PMI) measure (see Formula 2).

pv(Tx, Ty) =
∑
w∈Tx

∑
v∈Ty

log
p(w, v)

p(w) ∗ p(v) (2)

The token list of requirement rx (Tx) and requirement
ry (Ty) were compared and pv(Tx, Ty) was determined
by summing up the PMI values of all possible token-pairs
among Tx and Ty . The following features were used:

• feat1: overlap between description-tokens of rx
and all tokens of ry

• feat2: overlap between description-tokens of ry and all
tokens of rx

• feat3: PMI of title-tokens of rx and ry
• feat4: PMI of description-tokens of rx and ry
• feat5: PMI of all tokens of rx and ry

Feature feat1 refers to the number of description tokens
of rx that also occur in the list of title-tokens or description-
tokens of ry . In other words, we quantify the absolute value

of the word-overlap for a given requirement-pair (rx, ry)
between those tokens that appear in the description of rx
and those tokens which appear in the title or description
of ry . Likewise, feature feat2 corresponds to the counted
value reflecting the number of those description-tokens of
requirement rx that also co-occur in the list of description-
tokens of ry . In addition to these two features, we intro-
duced three probabilistic features which were all calculated
based on Formula 2. The idea of these features consists in
measuring the probability for each word-pair among Tx and
Ty that the word/token w ∈ Tx and the token v ∈ Ty co-
occur (i.e., p(w, v)) in relation to the individual probabilistic
occurrence of w (i.e., p(w)) and the individual probabilistic
occurrence of v (i.e., p(v)). To compute the value of a
requirement-pair (rx, ry) for feature feat3, the title-token list
of rx (denoted as Tx) and the title-token list of ry (denoted
as Ty) are compared with each other. The PMI value for
each token-pair among Tx and Ty is individually calculated
and summed up. The sum of all PMI values is then used
as feature feat3 for the pair (rx, ry). Likewise, the values
for feature feat4 and feature feat5 can be obtained by using
the same procedure. In case of feat4, the token list Tx is
replaced with the description-tokens of rx and the token
list Ty only contains the description-tokens of ry . For feat5,
Tx is considered as the list of all tokens of requirement
rx and Ty consists of all tokens of requirement ry . Once
all five features for a pair (rx, ry) are obtained, a feature
vector can be constructed. Before the feature vector is
passed as input to the classifier, feature scaling is applied to
each vector component individually. This ensures that every
feature value u ∈ {feat1, feat2, feat3, feat4, feat5} is
normalized and equal importance is given to all features.

IV. APPROACH

We developed two different content-based recommen-
dation approaches which follow the objective to identify
and recommend dependencies between requirements. Both
approaches were trained with a training set (TR) and tested
with a test set (TE). Our implementation was based on the
Scikit-learn library2.

A. Classification (Approach I)

Our first RS used a binary classifier to predict the ex-
istence of a dependency (true vs. false). We compared
different classifiers based on Linear SVM, Naive Bayes,
Random Forest, and k-Nearest Neighbor (k-NN) and evalu-
ated their performance (see Section V). We considered all
requirements from the training set TR and created training
pairs which were used as training samples. Each training
sample and each test sample corresponds to a feature vector
of a requirement pair (rx, ry) and contains either the
combined TF-IDF features or probabilistic features of rx

2Scikit-learn: http://scikit-learn.org

http://scikit-learn.org


and ry . The training pairs/samples were then used to learn a
prediction model. To generate all training pairs, we created
all possible (n − 1) requirement-pairs for a requirement
ra ∈ TR with every other requirement rb ∈ TR. For each
pair (ra, rb) the feature vector vra of ra was combined with
the feature vector vrb of rb into a single feature vector vra,rb .
The resulting feature vector was then used as a training
pair. In the case that a pair (rx, ry) was dependent (i.e.,
rx → ry and/or ry → rx), we assigned the true class to this
sample (label=true), otherwise false (label=false). Due to a
significant class imbalance between the false and true class,
not all training pairs could be used to train the classifier.
The number of independent pairs completely dominated the
pairs where both requirements were dependent on each other.
Thus, we randomly under-sampled the false class.

When we used TF-IDF features, the feature vector vra,rb
contained the TF-IDF values of all tokens that occur in the
title and description of ra and rb (Section III-A). In the case
of probabilistic features, we used the five computed features
described in Section III-B. The classifier was trained with
the training pairs by using their feature vector and label. The
learned prediction model was then used to predict dependent
requirements for a given requirement rx ∈ TE. This was
achieved by considering all possible test samples/pairs (rx,
ry), where rx ∈ TE ∧ ry ∈ TR. These pairs were passed
as input to the classifier. The classifier then individually
predicted the existence of a dependency between both re-
quirements for each pair. All those pairs for which the
classifier predicted true were finally recommended.

B. Latent Semantic Analysis (Approach II)

In order to compare our RS based on classification, we
developed a second recommender which is based on Latent
Semantic Analysis (LSA) and acts as baseline for the eval-
uation. LSA utilizes Singular Value Decomposition (SVD)
to transform a term-document matrix into its semantic-space
representation [6]. Given the TF-IDF values of all prepro-
cessed title- and description-tokens of the requirements, we
created a document-term matrix X . Each training sample
and each test sample corresponds to a feature vector of one
requirement and contains the TF-IDF features. The idea of
this approach consists in building a document-term matrix
with the requirements from the training set (80%) and then
to use LSA to find requirements which are similar to a
requirement rx from the test set (20%). All such similar
requirements are considered as being dependent on rx and
are then recommended as a requires-dependency.

In the document-term matrix X , the requirements rep-
resent the documents. The preprocessed title and descrip-
tion tokens of a requirement are combined into a single
document-vector. This vector contains the tokens’ TF-IDF
values and appears as a column in X . X is a m×n matrix
where each column j represents the document-vector dj of
requirement rj . Each row i of X corresponds to a single

token/term (tTi ). After the construction of X , LSA is applied
to decompose X into three matrices U , Σ, and V T such that
the product of these decomposed matrices leads back to the
original matrix X (i.e., X = UΣV T ).

The three components (U , Σ, V T ) constitute a semantic
representation of X . U is a m × l matrix which maps the
terms of the matrix X onto l characteristic features. Like-
wise, V T is a l×n matrix mapping the requirements of the
matrix X onto l characteristic features. Σ is a l× l diagonal
matrix where each diagonal entry σi represents a singular
value. Each singular value refers to the weight/importance of
the corresponding characteristic feature. The lowest singular
values are removed from Σ due to their low importance and
only the k highest ones are preserved. The number of U ’s
columns and the number of V T ’s rows is also reduced to k.
This leads to a truncated semantic representation (Uk, Σk,
V T
k ) which only contains the k most important characteris-

tics. This way, the dimensionality of the data is reduced and
noise is removed which leads to an implicit merge of terms
which share similar meanings (e.g., synonyms).

Although also some valuable information gets lost after
data reduction, the most valuable information of the original
semantic representation (U , Σ, V T ) still remains part of
the truncated semantic representation (Uk, Σk, V T

k ). The
product UkΣkV

T
k still results in a matrix that is quite close

to the original matrix X and can be considered as a good
approximation of X . The truncated semantic representation
(Uk, Σk, V T

k ) is used to find requirements similar to a
given requirement rx. This is achieved by transforming the
document-vector dx of rx into its reduced semantic space
representation d′x (see Formula 3).

d′x = Σ−1k UT
k dx (3)

The transformed document-vector d′x of rx is then com-
pared with all other semantic document-vectors which rep-
resent the other requirements in the low-dimensional space.
In order to find the requirements that are most similar
to rx, we measure the cosine similarity between d′x and
all other semantic document-vectors which are the column
vectors of V T

k . The underlying assumption is that the most
similar requirements can be considered as being probably
dependent on requirement rx. These requirements are then
recommended together with rx as requires-dependencies.

V. EVALUATION & DISCUSSION

To evaluate both approaches described in Section IV, we
used k-fold Cross Validation (k = 10). The overall prediction
quality of the recommended dependencies was measured
in terms of precision, recall, and F1 score. In the case
of the first RS based on classification, TF-IDF values of
unigrams, bi-grams, and tri-grams were used, for LSA (our
second RS) only unigrams were considered (see Section III).
The classifier of the first RS returned a probability value



for each prediction. We used this probability value to limit
the number of recommended requires-dependencies. We
introduced a threshold of 65% such that only predicted
dependencies which had a probability above this threshold
were recommended. Likewise, we introduced another thresh-
old parameter for the other approach based on LSA. This
threshold parameter was set to 0.83 and it referred to the
minimal cosine similarity that another requirement ry ∈ TR
must have in order to be considered as being dependent on
rx. The dependencies of those requirements which satisfied
the similarity-threshold were finally recommended.

Table II presents the evaluation results of the different
algorithms. According to these results, all algorithms per-
formed quite well with TF-IDF and probabilistic features.
This means that the requires-dependencies between the
requirements were found quite reasonably by all algorithms.
In particular, high scores in terms of precision and F1
can be observed for Linear SVM (Precision: 0.997, F1:
0.695) and Naive Bayes (0.901, F1: 0.720) when TF-IDF
features were used. However, although the recommender
using Linear SVM classification and TF-IDF features was
able to accurately predict dependencies (high precision), it
also shows a low recall of 0.533 which indicates that many
dependencies could not be found and hence were never
recommended by this classifier. This further indicates that
the used probability threshold of 0.65 (see Section V) is too
high for this classifier and more dependencies with a lower
probability should be included in the recommendation list.
Moreover, it is noticeable that the LSA approach (which rep-
resents the baseline of our evaluation) shows a low precision
of 0.6 (i.e., not so many recommended dependencies were
correct) but a high recall of 0.818 (i.e., most of all existing
correct dependencies were found and recommended). The
same also applies to k-Nearest Neighbors (Precision: 0.611,
Recall: 0.733). In case of LSA, this might be due to the
reason that the LSA approach can be considered to be acting
like a fuzzy clustering algorithm which tends to recommend
all requirements that are very similar on a content-based
level. This way, most dependencies can be found. However,
LSA’s low precision indicates that this approach seems to
lack of naivety and can not develop a good sense in order to
distinguish between those requirements that are just similar
versus those requirements that are really dependent.

Since LSA requires a document-term matrix as input, it
cannot be combined with our probabilistic features. Naive
Bayes is also supposed to be used only with TF-IDF features
(or term frequencies). Hence, we only evaluated the RS
based on the other three classifiers. By comparing the previ-
ously discussed results (obtained by using TF-IDF features)
with the results obtained by using probabilistic features,
one can observe a remarkable increase of the prediction

3We tested different threshold-combinations and achieved the best pre-
diction results with 65% for probab. threshold and 0.8 for dist. threshold.

Table II
SCORES OF THE DIFFERENT ALGORITHMS (PRECISION [P], RECALL

[R], AND F1 SCORE [F1]). THE HIGHEST SCORES ARE HIGHLIGHTED.

TF-IDF Features Probabilistic Features
Algorithm P R F1 P R F1
LSA (Baseline) 0.600 0.818 0.692 – – –
Naive Bayes 0.901 0.600 0.720 – – –
Linear SVM 0.997 0.533 0.695 0.812 0.567 0.668
k-Nearest N. 0.611 0.733 0.667 0.786 0.733 0.759
Random Forest 0.889 0.533 0.667 0.929 0.867 0.897

quality for all three classifiers (except Linear SVM). This is
especially true with respect to all measures for the Random
Forest classifier which achieved the best overall prediction
quality (Precision: 0.929, Recall: 0.867, F1: 0.897) and could
even significantly outperform the baseline approach in terms
of recall. This behaviour can be explained by taking a
look at the probabilistic feature generation approach. The
idea of probabilistic features consists in measuring the co-
occurrence of words that appear in two requirements. This
ensures that ”noisy” words of a given requirement which are
unlikely to co-occur in the context of another requirement,
are considered as unimportant and hence do not contribute
much to the calculated feature values. However, the valuable
words of a given requirement that co-occur in the context
of another requirement, represent valuable information and
lead to a significant contribution to the calculated feature
values. Consequently, a more descriptive feature represen-
tation containing valuable information can be provided to
the recommender based on Random Forest. This empowers
the classifier to more accurately detect whether or not a
dependency between two requirements exists.

VI. CONCLUSION & FUTURE WORK

Conclusion. In this paper, we introduced two rec-
ommender systems (RS) for the recommendation of
requirement-dependencies of type requires. We focused on
the type requires, as this type can be considered as the most
critical type among all existing dependency types [10]. The
first RS was based on classification and the second was based
on Latent Semantic Analysis (LSA). The used classifiers
(Naive Bayes, Linear SVM, k-NN, Random Forest) of the first
approach were fed first with TF-IDF features and afterwards
with probabilistic features. In contrast to that, only TF-
IDF features were used for LSA. The results obtained with
TF-IDF features provide clear indication that all classifiers
(except k-NN) achieve a high precision rate. However, LSA
(our baseline approach) shows a low precision which is due
to its similarity-based approach that tends to find similar
requirements instead of requirements which really dependent
on a given requirement. Moreover, the analysis reveals that
Random Forest achieved the best overall prediction quality
with probabilistic features in terms of all three measures
(Precision: 0.929, Recall: 0.867, F1-score: 0.897) and could



even significantly outperform LSA’s high recall benchmark
of 0.818. Consequently, the main finding of this work is that
probabilistic features can convey more valuable information
to the classifiers, in order to increase the overall prediction
quality. This can be explained by the fact that the probabilis-
tic features reflect statistical correlations between the words
which provide more precise descriptions of the actual word-
based similarity of the requirement pairs to the classifiers.

Future Work. To counteract common cold-start problems
which often occur in the early application of a RS, we
propose to migrate the existing RS to a hybrid solution which
combines the LSA approach with our classification approach
based on probabilistic features. Moreover, the evaluation
criteria can be relaxed such that, for example, the transitivity
of dependencies are considered during the evaluation. A
predicted dependency rx → rz for a given requirement rx
can be considered as correct if there exist a dependency
rx → ry and ry → rz in the test set. Furthermore, our
approach can be extended such that further dependency types
(e.g., excludes or includes) can be identified. This can be
achieved by treating our classification problem as a multi-
class classification problem. However, this would require the
use of another (larger) dataset since in the currently used
one, only dependencies of type requires are included.

ACKNOWLEDGMENT

The work presented in this paper has been conducted
within the scope of the Horizon 2020 project OPENREQ
(732463).

REFERENCES

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward
the next generation of recommender systems: A survey of
the state-of-the-art and possible extensions. IEEE Trans. on
Knowl. and Data Eng., 17(6):734–749, June 2005.

[2] Muesluem Atas, Ralph Samer, and Alexander Felfernig. Au-
tomated identification of type-specific dependencies between
requirements. In 2018 IEEE/WIC/ACM International Confer-
ence on Web Intelligence (WI), pages 688–695, Dec. 2018.

[3] Pär Carlshamre, Kristian Sandahl, Mikael Lindvall, Björn
Regnell, and Johan Nattoch Dag. An industrial survey of
requirements interdependencies in software product release
plannin. In Proceedings of the Fifth IEEE International
Symposium on Requirements Engineering, RE ’01, pages 84–,
Washington, DC, USA, 2001. IEEE Computer Society.

[4] Ruzanna Chitchyan and Awais Rashid. Tracing requirements
interdependency semantics. In Workshop on Early Aspects,
Jan 2006.

[5] Alan Davis, Oscar Dieste, Ann Hickey, Natalia Juristo, and
Ana M. Moreno. Effectiveness of requirements elicitation
techniques: Empirical results derived from a systematic re-
view. In Proceedings of the 14th IEEE International Re-
quirements Engineering Conference, RE ’06, pages 176–185,
Washington, DC, USA, 2006. IEEE Computer Society.

[6] Scott Deerwester, Susan T. Dumais, George Furnas, Thomas
Landauer, and Richard Harshman. Indexing by latent seman-
tic analysis. Journal of the American Society for Information
Science, 41(6):391–407, 09 1990.

[7] Gouri Deshpande. Sreyantra: Automated software require-
ment inter-dependencies elicitation, analysis and learning.
In 41st International Conference on Software Engineering
(ICSE’19), Canada, 2019.

[8] Benjamin Van Durme and Ashwin Lall. Streaming pointwise
mutual information. In Proceedings of the 22nd Interna-
tional Conference on Neural Information Processing Systems,
NIPS’09, pages 1892–1900, USA, 2009. Curran Assoc. Inc.

[9] Alexander Felfernig, Gerald Ninaus, Harald Grabner, Flo-
rian Reinfrank, Leopold Weninger, Denis Pagano, and Walid
Maalej. An overview of recommender systems in require-
ments engineering. In Managing Requirements Knowledge,
chapter 14, pages 315–332. Springer, 2013.

[10] Stefan Ferber, Jürgen Haag, and Juha Savolainen. Feature
interaction and dependencies: Modeling features for reengi-
neering a legacy product line. In Gary J. Chastek, editor,
Software Product Lines, pages 235–256, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg.

[11] Dean Leffingwell. Calculating your return on investment
from more effective requirements management. American
Programmer, 10(4):13–16, 1997.

[12] Bamshad Mobasher and Jane Cleland-Huang. Recommender
systems in requirements engineering. AI Magazine, 32(3):81–
89, Jun. 2011.

[13] Jamie Murphy, Charles F. Hofacker, and Richard Mizerski.
Primacy and recency effects on clicking behavior. Journal of
Computer-Mediated Communication, 11(2):522–535, 2006.

[14] Gerald Ninaus, Florian Reinfrank, Martin Stettinger, and
Alexander Felfernig. Content-based recommendation tech-
niques for requirements engineering. In 2014 IEEE 1st
International Workshop on AI for Requirements Engineering
(AIRE), pages 27–34, Aug 2014.

[15] Paul Resnick and Hal R. Varian. Recommender systems.
Commun. ACM, 40(3):56–58, March 1997.

[16] Günther Ruhe. Product release planning: methods, tools and
applications. CRC Press, 2010.


	Introduction
	User Study & Dataset
	Preprocessing & Feature Extraction
	Extraction of TF-IDF Features
	Extraction of Probabilistic Features

	Approach
	Classification (Approach I)
	Latent Semantic Analysis (Approach II)

	Evaluation & Discussion
	Conclusion & Future Work
	References

