A Recommendation System for Emergency Mobile Applications
using Context Attributes: REMAC

Alireza Ahmadi Debjyoti Mukherjee Guenther Ruhe
alireza.ahmadil@ucalgary.ca debjyoti.mukherjel@ucalgary.ca ruhe@ucalgary.ca
SEDS laboratory SEDS laboratory SEDS laboratory
University of Calgary University of Calgary University of Calgary
Calgary, Canada Calgary, Canada Calgary, Canada
ABSTRACT be further enhanced to look beyond the current set of function-

The extensive use of mobile devices had led to tremendous growth
in not only the usage of different apps but also their capability to
help people in moments of crisis. There are different emergency
mobile apps published in the app markets; these apps can be of
enormous assistance to victims as they can provide valuable in-
formation and guidance at the opportune moments. However, app
store reviews, ratings, and relevant studies have revealed that users
are often averse to using these apps or their different features. This
draws our attention to the need for recognizing essential features
and including them in the emergency apps to increase their usabil-
ity. Our proposed recommendation system called REMAC combines
different machine learning techniques to analyze the context char-
acteristics of different organizations and suggest unique features
that can be included in their emergency apps. REMAC is built by
analyzing 24 potential context attributes of 1909 universities spread
across North America. This research also includes a systematic
attribute selection process that enables us to reach a local optimum
for the given dataset. This tool carefully dissects the context at-
tributes of each university and suggests top features that should be
included in its emergency app. It leverages the data (other apps and
features) provided by the app markets to suggest essential features.

Even though emergency apps can be in different types and cate-
gories, in this study, universities’ emergency apps have been investi-
gated which have similar nature. REMAC is evaluated by inspecting
features from 41 apps, and the tool has an accuracy of over 97.07%.
In the course of this research, we found that (i) emergency apps from
organizations having similar context attributes share a high degree
of overlapping features (ii) top common features of emergency apps
in entities of one cluster can be a good recommendation for the
app of another entity similar to them, and (iii) for a given dataset,
a subset of the data can also be used to enhance the performance
of the system without compromising on the accuracy. REMAC has
been parameterized to adjust according to the requirements of the
organizations. It can proactively understand organizations’ needs
and suggest features to support their emergency apps. REMAC can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WAMA 19, August 27, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6858-2/19/08...$15.00
https://doi.org/10.1145/3340496.3342760

alities provided by emergency apps and extract other utilitarian
features by assessing users’ needs.

CCS CONCEPTS

« Software and its engineering — Requirements analysis;
Software prototyping.

KEYWORDS

Emergency, Mobile Apps, Recommendation System, Context, Clus-
tering

ACM Reference Format:

Alireza Ahmadi, Debjyoti Mukherjee, and Guenther Ruhe. 2019. A Recom-
mendation System for Emergency Mobile Applications using Context At-
tributes: REMAC. In Proceedings of the 3rd ACM SIGSOFT International Work-
shop on App Market Analytics (WAMA °19), August 27, 2019, Tallinn, Estonia.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3340496.3342760

1 INTRODUCTION

Smartphones can be of enormous importance in emergency situa-
tions, as they may be among their owner’s only possessions and
resources [12]. To mitigate the threats of an emergency situation
and being cognizant of the importance of mobile functionality dur-
ing any crisis, several mobile apps have been designed by NGOs
(non-government organizations), official state departments, interna-
tional humanitarian organizations, and other individual companies.
The goal of all these different apps is to facilitate the management
of crisis and provide guidance to the impacted distressed victims.
However, it has been identified that apps currently available to the
general public lack relevant and vital features [20].

However, including all the important features for various types
of emergencies would lead to the problem of too many features
being included. This is not an ideal situation as the victims will be
unnecessarily puzzled navigating through the myriad of options
to find the desired features. Using a complex system in the middle
of any crisis can be more stressful and can consume a lot of time.
Since time is critical in an emergency situation and even saving
a few seconds can play a vital role in a victim surviving a crisis,
it is of paramount importance that emergency apps should have
features that are most relevant to the current situation [30].

For any mobile emergency app, this can be made possible if
context information is available and the features are prioritized
using contextual information[18]. Contextual information refers
to all the factors that can potentially play a role in an emergency

https://doi.org/10.1145/3340496.3342760
https://doi.org/10.1145/3340496.3342760

WAMA °19, August 27, 2019, Tallinn, Estonia

situation. We have built a recommendation system (REMAC') that
can propose vital features to be included in the emergency app
using contextual information. For this study, we have focused only
on university emergency apps, but the same approach can be used
for other cases as well. In this research, we have demonstrated
how contextual information can be effectively used to categorize
different universities and then suggest top features based on their
category. This recommendation system clusters similar universities
based on university attributes and then recommends top features
that are common for universities in that cluster. When a new uni-
versity data is obtained, it can be mapped to one of the existing
clusters using its context attributes and the proposed features can
be included in the new university’s emergency app. In this paper,
“apps” refers to mobile emergency apps only.
In this paper, we answer the following research questions:

RQ1: How good can the contextual information be used in a rec-
ommendation system to cluster similar entities together?

Why and How? The nature and impact of any emergency situa-
tion depend on the characteristics of its context [23]. Identifying
these characteristics and their influence on emergency situations
will enable us to build an effective recommendation system. We
will extract relevant context characteristics data and cluster similar
ones. We will use existing features of safety apps in our dataset to
assess the similarity between them.

RQ2: Can we suggest useful emergency mobile apps’ features for
an entity based on its context similarities to other entities?

Why and How? Considering the concept of collaborative filtering,
it is highly likely that entities with similarities could have similar
requirements for their safety mobile apps. We plan to build a system
that would gather information and suggest features using it. We
will evaluate the accuracy of our tool for recommending features
using existing features of safety apps in our dataset.

We have organized this paper in the following manner. Section
2 describes the previous work done in this area, section 3 refers to
the dataset, and section 4 describes the methodology that we have
used. Section 5 contains the result, sections 6 refers to the threats to
validity, and section 7 contains the conclusion and the future work.

2 RELATED WORKS

Recommendation systems leverage an input data in a way to gen-
erate desired output. Therefore, recommendation systems differ
based on “what to consider as input”, “how to process it”, and “what
to recommend as output” [25]. Considering the nature of recom-
mendation systems and the field of study, we can divide the related
studies into two main categories; the recommendation systems
which use contextual information and the ones which are used for
eliciting requirements. In this section, we are going to mention
some of these studies.

Context-Based Recommendation Systems: Context sensitive sys-
tems are ubiquitous and there is a lot of research in this field. The
focus of all these studies is to make the systems more effective so

!Recommendation system for Emergency Mobile Applications using Context

Alireza Ahmadi, Debjyoti Mukherjee, and Guenther Ruhe

that it can adapt to its surroundings. In [4], Matthias conducted a
survey on various context-aware systems to present common ar-
chitecture principles of context-sensitive systems and also derive a
design framework to explain the various elements common to most
context-aware architectures. In another study [28], Vaninha et al.
presented an integrated approach for designing context-sensitive
systems (CSS). This study focused on the proposed way of thinking
about context, on the proposed context metamodel and on the spec-
ification of a process for designing CSS. Gediminas Adomavicius
and Alexander Tuzhilin conducted a study in [2] to assess the im-
portance of contextual information for recommendation systems.
They argued that relevant contextual information does matter in
recommender systems and that it is important to take this informa-
tion into account when providing recommendations. They further
discussed how context can be modeled in recommender systems.
In another study [27] conducted by Katrien et al., they conducted a
survey on context-aware recommendation systems for learning. As
learning is taking place in extremely diverse and rich environments,
the incorporation of contextual information about the user in the
recommendation process has gained a lot of interest. Such con-
textualization is researched as a paradigm for building intelligent
systems that can better predict and anticipate the needs of users,
and act more efficiently in response to their behavior. A systematic
literature review on context-aware recommendation systems [29]
was performed by Norha et al.. All these studies and many more
have emphasized how contextual information can be effectively
utilized in different software systems. There are several other stud-
ies [3, 16, 22] discussed how different contextual information has
enhanced the functionality of the systems. But none of these studies
have explicitly worked with mobile emergency apps or discussed
how contextual information can be used for eliciting vital features
for emergency apps.

Recommendation Systems for Software Feature: Several studies
have been conducted to elicit the most essential and important
requirements for software. Most of these studies leverage the role,
importance, and interests of stakeholders as input to a system in or-
der to recommend the right features. In [8], a recommender system
for requirement elicitation is introduced which uses unsupervised
clustering techniques to manage the placement of stakeholders and
their interests for recommending features. In some other studies, by
using data mining, the same concern for ultra large scale software
has been addressed [10][7]. In [17], Lim and Finkelstein proposed
a method for identifying and prioritizing requirements by using
social networks and collaborative filtering. Even though in some
other studies such as [19] and [21], different types of inputs like
users’ feedback, value and effort of the features, competitors’ useful
features, and cohesiveness between features have been investigated,
a recommender system which automates the process has not been
proposed.

To the best of our knowledge, this study is the first which con-
siders using contextual information for recommending features to
an emergency mobile app.

A Recommendation System for Emergency Mobile Applications using Context Attributes: REMAC

3 DATASET

In this study, we have used two sets of data from two different
sources. In this part, we are going to describe the process of data
collection and the structure of the data.

3.1 Mobile Emergency Apps’ Features

As mentioned earlier, our focus is on emergency mobile apps of the
universities. In order to gain valuable insights in this area, we have
collaborated with AppArmor, a company pioneer in developing
custom mobile safety apps and having over 200 customers around
the world, mainly in North America. Most of these customers are
educational institutions including universities. Therefore, in this
study, emergency apps of the universities in North America have
been targeted. AppArmor provided us the list of the apps developed
by them along with the features.

In this research, we have focused on universities. So, we retrieved
only those apps from this data that belonged to universities. Our
final list contained apps from 41 different universities. We extracted
the distinct features present in each app; the average number of
features per app is 8, and the total number of unique features across
all the apps is 19.

3.2 Universities’ Context Attributes

We analyzed different websites and datasets to extract university
context related attributes. We found UniRank website as one of the
sources which provide the most relevant information about different
context aspects of the universities [1]. For example, UniRank is
the only source which includes the settings of the universities’
campuses; this can be a vital piece of contextual information. We
developed an automated web scraping tool to scrap this website and
extract the information for all the universities in North America.
We successfully collected data related to 24 different univer-
sity attributes for 1909 universities across three countries of North
America: Canada, United States, and Bermuda. Among these univer-
sities, we selected only those 41 that were common to AppArmor’s
customer list. The university attributes that we collected were:
country rank, founded year, country, state or province, city, city
population range, graduate studies, undergraduate studies, gender
admission, admission selection, admission rate, number of students,
number of academic staff, control type, entity type, academic cal-
endar, campus setting, religious affiliation, library, housing, sport
facilities, financial aids, abroad study, and distance learning.

4 METHODOLOGY

In this section, we discuss the main concepts of REMAC. Figure 1
describes the process flow of the system.

4.1 Context Attributes Selection

As discussed in Section 3, we scrapped 24 attributes as context-
related university attributes. On further scrutinizing, we realized
that all the attributes may not be essential to achieve the best results.
We used a systematic attribute selection mechanism to obtain the
optimum set of attributes following these steps:

e We removed the attributes that had the same value for all 41
universities since they are not going to affect REMAC. For

WAMA °19, August 27, 2019, Tallinn, Estonia

example, as all the universities have a library, we removed

this attribute.
e We calculated the variance for the numerical and the cat-
egorical binary attributes. We eliminated those attributes
whose variance was less than a threshold. For example, in
some attributes such as the calendar type of universities or
the presence of sports facilities in them, only a very few
universities were different from the others. So, we removed
these attributes.
For the categorical attributes with the multiple values, we
calculated the frequency for each value. We determined the
best and the worst distribution for each attribute and com-
puted the distance of the current distribution from these
two extremes. We eliminated those attributes which were
closer to the worst distribution based on a threshold. Follow-
ing this step, attributes like religious affiliation have been
removed, as there is “no religious affiliation" for most of the
universities.

Generally, we kept attributes which may provide a distinction be-
tween universities. Applying this process on the entire dataset,
we eliminated half of the attributes; then we followed a greedy
approach to check if the accuracy of REMAC can be enhanced by
including some of the discarded attributes. We checked with the
different combinations of attributes and obtained the local optimal
set which also contained 12 attributes. From now, we name the
set of attributes in the local optimum as the “direct attributes”. We
will evaluate the efficiency of the REMAC on both sets of all 24
attributes and 12 direct attributes.

4.2 Clustering

Clustering is the task of grouping a set of elements in such a way
that elements in the same group (called a cluster) are more similar
(in some sense) to each other than to those in other groups (clusters)
[5]. REMAC uses clustering techniques to group the universities
into different clusters based on their context attributes. The univer-
sity attributes that we have selected have a mixed datatype; some of
them are numerical data (for example, City population, Admission
rate, Academic staff, etc.), whereas the others are categorical types
(for example, City, Region, Country, Admission selection, etc.). Of
the 24 attributes, only 8 are of a numerical type and the remaining
16 are of a categorical type. So we needed a clustering algorithm
that could work with such a mixed datatype and K-Prototype was
the ideal option for us [13].

K-Prototype is a combination of 2 famous clustering algorithms,
namely K-Means [5] and K-Modes [9].K-Means only works with
numerical data while the K-Modes clustering algorithm is an ex-
tension to the K-Means algorithm for clustering categorical data.
K-Prototype works by combining both these 2 algorithms together;
it applies K-Means for the numerical attributes using Euclidian dis-
tance as the measure for calculating distance, and K-Modes for the
categorical attributes using dissimilarity measure as the distance
function [13].

K-Prototype has two main parameters that need to be adjusted
to obtain the best clustering results named “K” and “y”. K refers to
the number of clusters into which the entire data has to be divided.
In order to pick K wisely, we used the “Elbow Technique”[14]. y

WAMA °19, August 27, 2019, Tallinn, Estonia

Universities
Scraped Information

University

Context __ _
Attributes
I

Alireza Ahmadi, Debjyoti Mukherjee, and Guenther Ruhe

AppArmor
Developed Apps

_| Emergency App
Features
mmmmmmmmmmm -
- [[
______ | S

’] i

i Finding Local ! . Determining Top Assign the Recommend
i K L= Clustering Newcomer

t Optimum Common Features Features

") to a Cluster

Figure 1: Our process

is the weight assigned to the categorical attributes with respect to
the numerical ones. The optimum value for y was decided based
on the highest similarity score (discussed in section 4.4).

4.3 Recommendation System

In this study, we have developed a system using the concept of
collaborative filtering. Collaborative filtering is a method used by
recommendation systems, which by collecting preferences and
information from many entities, makes automatic predictions for
another entity [6]. The underlying assumption of the collaborative
filtering approach is that if two entities are similar in one aspect,
they are more likely to be similar in another aspect too [26].

In our case, we use clustering analysis to group similar univer-
sities into clusters. We determine the top common features that
are present in the apps of the universities in each cluster by cal-
culating the frequency of features’ occurrences. We believe that
these features are good candidates to be implemented in the app of
a new university that has similar attributes. In other words, we are
using the attributes of a university as a knowledge to recommend
useful app features to it. We judge the effectiveness of REMAC by
calculating the “Accuracy” of the system as described in 4.4.

4.4 Validation
There are two main steps in REMAC:

(1) Making clusters based on context attributes to have similar
universities in one set.

(2) Recommending features based on common features of the
apps from the universities within the same cluster to a new
university similar to them.

In order to validate our tool, we need to assess the quality of the
clusters and then measure the usefulness of the recommended fea-
tures. In the following, we suggest two similarity scores for clusters’
quality assessment and then discuss the customized version of k-
fold cross validation for evaluating the recommendation part of the
system. In the end, we express the definition of the term “accuracy”
for the REMAC

Similarity Score: For measuring the quality of the clusters, we
propose a criteria named “similarity score” using Jaccard Index and
Cosine Similarity.

If A is the set of features available in app of university Uy and
B is the set of features available in app of university Ug, we can
calculate the similarity between U4 and Up using Jaccard index as
denoted in equation 1 [24].

|AN B

JaccardIndex =
|AU B|

(1)

We map each set of app features to a binary vector with a fixed
length of m, where the m is the total number of features that can
potentially be available in an app. As mentioned in section 3, based
on our dataset, m = 19. We build the feature bit vector such that
each element in the vector is either “1” (if the corresponding feature
is implemented in the app), or “0” otherwise. If A is the mapped
vector from the set of features available in safety app of university
U4 and B is the mapped vector from the set of features available
in safety app of university Up, we calculate the similarity between
Ux and Up using Cosine similarity as denoted in equation 2 [31].

A.B

CosineSimilarity = m

)
We calculated similarity within a cluster by obtaining the average
of Jaccard index (or Cosine similarity) values of app features for each
pair of universities in the cluster. Then we obtained the similarity
score by calculating the average of the similarity values for all the
clusters. We named it Similarity Score 1 when we used Jaccard
index and Similarity Score 2 when we used Cosine similarity. It
is obvious, that for a better comparison, we need to know the
similarity score of the set before clustering. In that case, we assumed
that all the universities are in one cluster and followed the same
process. Following this process, we can assess the quality of clusters
using a criterion dependent from clustering algorithm; while the
clustering process has been done based on context attributes and
similarity scores have been calculated using apps’ features.

K-Fold Cross Validation: Cross validation is a validation tech-
nique for assessing the performance of supervised learning methods
on labeled data [15]. In our case, we used this technique to assess
the performance of the clustering method, where there are no labels.
We divided our data into k folds and perform the clustering (find-
ing centers) using (k-1) folds of data. We calculate the similarity
scores based on the (k-1) folds of data and also determine the top

A Recommendation System for Emergency Mobile Applications using Context Attributes: REMAC

common features for each cluster. Suppose we have obtained n clus-
ters Cq, Cy, ..., C,. We mapped each university U in the remaining
fold (referred to as newcomer) to one of the clusters by calculating
its distance from the n cluster centers and selecting the minimum
one. In case of multiple minimal distances, alphabetical ordering
is applied. We recalculated the similarity scores on the entire data
and iterated this procedure for k times. We obtained the “Accuracy”
measure as discussed below.

Accuracy: Accuracy is the measure of the preciseness of the
suggested features using REMAC. As discussed above, we used
k-fold cross validation to evaluate REMAC. Suppose a newcomer
university u is mapped to a particular cluster C;, for which the
set of top common features is F = {fi, f2, ..., f1}. We calculate the
accuracy by measuring the overlap between F and the features of
the app for u. The number of top common features has been set to 5
as default. We call an overlap between a newcomer app features and
a set of top common features as a good and acceptable overlap if the
number of overlaps is 3 or more. While increasing these numbers
(e.g. the overlap of 5 and more out of the top 7 features) can raise
the chance of high accuracy, we decided to stick to the overlap of 3
and more out of the top 5 features in order to stay strict enough.

5 RESULTS

In the previous section, we explained different modules of REMAC.
Now, we are going to show that REMAC makes meaningful clusters
and recommends useful features. In this section, we have formulated
three hypotheses based on an assumption and then evaluated them.

5.1 Assumption and Conjectures

Assumption: Requirement engineers of AppArmor extract the simi-
larities of a new client with the previous ones and suggest the same
features to them.

First Conjecture: Universities with similar context attributes have
similar features in their safety apps.

Based on this assumption, we expect to see universities’ apps
in each cluster based on the context attributes are more similar.
For calculating similarity, we would use the methods mentioned in
section 4.4.

Second Conjecture: Top common features of apps from universities
in one cluster could be good recommendations for the safety app of
another university similar to them.

Our goal is to recommend features for safety mobile apps. We
expect to see REMAC is recommending useful features for a new
university.

Third Conjecture: Considering direct attributes of context would
result in more useful features for universities’ apps.

In section 4.1, we decreased the number of context attributes
following a systematic procedure and we named the new set as
direct attributes. We expect to see that using this set would increase
the accuracy of REMAC in recommending features.

5.2 Evaluation of Conjectures

In order to evaluate conjecture 1, we ran K-prototype 5 times on the
set of 41 universities. We obtained the optimum number of clusters
(“K”) as 4 using the Elbow technique. At each run, we calculated
the similarity score of the set after clustering and compared the

WAMA °19, August 27, 2019, Tallinn, Estonia

results to the similarity score of the set before clustering. The results
are reported in table 1. As shown, both the similarity scores have
always increased after clustering. We can say that REMAC produces
meaningful clusters. Therefore, we have no reason to reject the first
conjecture.

In order to evaluate the second conjecture, we calculated the
accuracy of REMAC considering 5 top common features and mea-
suring the overlap of 3 or more features. We ran the 10-fold cross
validation for 10 times and obtained the accuracy of the tool as
97.07%. The frequency of the overlap counts is shown in figure 4. As
evident from the experiment, there is no university safety app with
features overlaps count of 0 or 1 and there is only one university
with overlaps count of 2 features. The result of similarity scores are
also shown in figures 2 and 3. As expected, in all the folds, there is
a considerable increase in similarity score after clustering to that
before clustering. Only in 3 occasions, the similarity score after
clustering newcomers has been less than after clustering the base
set only. These decreases are due to additional features of newcom-
ers which will not affect the efficiency of REMAC. Therefore, we
have no reason to reject the second conjecture.

0.6

058 ™

o
0.56 S, S
g
0.54
»
052
., e, - -

i o e .. o

T Cogernene ®
0.48

foldl fold2 fold3 fold4 fold5 foldé fold7 foldE fold9 fold 10

«+ -+ Before Clustering
—y— A fter Clustering Newcomers

= o= After Clustering Base Set

Figure 2: Similarity Score 1, before and after clustering on
10 folds

0.74
0.72 Lo

07

0.68

0.66 -"w.__ et g e

064
foldl fold2 fold3 fold4 fold5 foldé fold7 foldB8 fold9 fold 10

+s sgss BeforeClusterng == gem After Clustering Base Set

g [\ Fror Clustering Newcomers

Figure 3: Similarity Score 2, before and after clustering on
10 folds

WAMA °19, August 27, 2019, Tallinn, Estonia

Alireza Ahmadi, Debjyoti Mukherjee, and Guenther Ruhe

Table 1: Achieved similarity scores from the set of 41 universities before and after clustering over 5 runs

Similarity Score 1 | Similarity Score 2 | Similarity Score 1 | Similarity Score 2
Before Clustering | Before Clustering | After Clustering | After Clustering
Run #1 0.543 0.697
Run #2 0.561 0.713
Run #3 0.506 0.664 0.541 0.696
Run #4 0.564 0.716
Run #5 0.563 0.716
m 6 THREATS TO VALIDITY
b We reported the results of REMAC for emergency mobile apps
15 (based on the similarity measures for the clusters and the feature
14 overlap of the recommended features) to describe the process and
12 demonstrate its effectiveness of the system. In the following, we
10 discuss the threats to validity [11].
8 Construct Validity: REMAC is based on the assumption about
B how AppArmor requirement engineers gather information and
i suggest app features to their clients. We also evaluate the system
. based on the feature overlap for the emergency apps of their clients.
‘ = However, considering the huge client base that AppArmor has and

95

85

75

65

55

45
Overlap of 3 Features Overlap of 4 Features Overlap of 5 Features
and mare and more

e Al Attributes « =« « Direct Attributes

Figure 5: Average of accuracy in different levels over 5 runs

For the third conjecture, we evaluated REMAC using two sce-
narios. First, considering all the 24 attributes and then, considering
only the 12 direct attributes.

When we calculated the accuracy considering the overlap of
3 or more features out of 5, the results were the same. However,
as we make the conditions more stringent, and calculate accuracy
considering only overlap of 4 or more, or all 5 features, the value
varies. As evident from figure 5, the accuracy of REMAC has im-
proved using direct attributes. These values have been obtained by
calculating the accuracy over 5 runs. Therefore, we have no reason
to reject the third conjecture as well.

knowing that they are a pioneer in developing custom emergency
apps, we trust their knowledge and the capability of suggesting
important features based on university characteristics. Our system
stands on two pillars; context attributes for universities and features
suggested by AppArmor for their apps. There is no doubting the
fact that features provided in the university’s emergency apps are
highly dependent on their different context criteria. In building
this system, we have chosen those context attributes that can be
influential in emergency cases.

Conclusion Validity: REMAC had access to features of 41 univer-
sity emergency apps and the apps had diverse features. It has been
seen that increasing the similarity score over 19 potential features
needs a high degree of overlap. In all the experiments, it has been
confirmed that clustering has provided better similarity scores. The
accuracy of REMAC for suggesting top features has been calculated
on 10 runs using k-fold cross validation. Although this result may
vary for a different dataset, the results will still be comparable.

Internal Validity: Since REMAC works by clustering similar data
points based on their context attributes, it is vital to choose context
attributes appropriately. Inevitably, the results would suffer if these
attributes are selected in an ad-hoc manner without due considera-
tion. In the case of REMAC, we picked related context attributes by
considering different sources of data. Furthermore, we optimized
the system by finding the local optimum of the dataset.

External Validity: We have evaluated REMAC using published
emergency apps built by AppArmor. Owing to the unavailability of
other data sources, our evaluation is limited to this data set. Hence,
we cannot claim the general applicability of this system on other
data. This system stands on the fundamental of achieving good clus-
ters based on appropriate context attributes, and that does not vary
with data. Generalizing this approach is highly dependent on the
context attributes. We believe REMAC should work on other data
as long as there are valid context attributes and efficient evaluation
data sets.

A Recommendation System for Emergency Mobile Applications using Context Attributes: REMAC

7 CONCLUSION AND FUTURE WORK

In this study, we developed a recommendation system that would
suggest important features to a new university’s emergency app.
We evaluated this tool by running 10- fold cross validation for 10
times and obtained an average accuracy of 97.07% when we con-
sidered the overlap of 3 or more features among the top 5 features
suggested. The key idea is to group similar universities and then
extract the common features from them. These common features
can be suggested to any new university that is added to the cluster.

As more and more universities are added to the clusters, the
feature set would gradually change and so would be the suggested
features. So, the clustering algorithm should be run frequently as
other universities are added to the list. As we discussed in the paper
above, we started with an assumption and three hypotheses. We
discovered that all of the hypotheses were true. The results are
based on the dataset that was available during this experiment.
With a different dataset, the results might vary.

Considering the process flow of the REMAC, there are some
areas that can potentially be investigated in the near future. We
have listed those areas below:

e Applying REMAC to other datasets: Till now, we have
built and evaluated REMAC in emergency apps of universi-
ties, while we believe this approach can be used for other
applications as well. We will use other datasets to assess the
efficiency of the REMAC and discover the potential changes
needed in it.

¢ Looking for approaches for finding context attributes
and their relevance: Context attributes chosen for univer-
sities resulted in high similarity in the clusters and high
accuracy in recommending features. As we mentioned, us-
ing REMAC is highly dependent on picking right context
attributes and this can be a challenging step for other con-
texts. We would like to investigate the process of picking
attributes and measuring the relevancy of them.

ACKNOWLEDGMENTS

We thank AppArmor for providing valuable insights and helpful
inputs to this study. This research was partially supported by the
Natural Sciences and Engineering Research Council of Canada,
NSERC

Discovery Grant RGPIN-2017-03948.

REFERENCES

[1] Accessed: 2019-03-09. World University Rankings & Reviews | uniRank. https:
/Iwww.dicu.org/.

[2] Gediminas Adomavicius and Alexander Tuzhilin. 2011. Context-aware recom-
mender systems. In Recommender systems handbook. Springer, 217-253.

[3] Sabah Al-Fedaghi. 2017. Context-aware software systems: toward a diagrammatic
modeling foundation. Journal of Theoretical and Applied Information Technology
95, 4 (2017), 936.

[4] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. 2007. A survey on
context-aware systems. International Journal of Ad Hoc and Ubiquitous Computing
2, 4 (2007), 263-277.

[5] Sugato Basu, Mikhail Bilenko, and Raymond] Mooney. 2004. A probabilis-
tic framework for semi-supervised clustering. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
59-68.

[6] John S Breese, David Heckerman, and Carl Kadie. 1998. Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers
Inc., 43-52.

WAMA °19, August 27, 2019, Tallinn, Estonia

—_

7] Carlos Castro-Herrera, Chuan Duan, Jane Cleland-Huang, and Bamshad
Mobasher. 2008. Using data mining and recommender systems to facilitate
large-scale, open, and inclusive requirements elicitation processes. In 2008 16th
IEEE International Requirements Engineering Conference. IEEE, 165-168.

8] Carlos Castro-Herrera, Chuan Duan, Jane Cleland-Huang, and Bamshad
Mobasher. 2009. A recommender system for requirements elicitation in large-
scale software projects. In Proceedings of the 2009 ACM symposium on Applied
Computing. ACM, 1419-1426.

9] Anil Chaturvedi, Paul E Green, and J Douglas Caroll. 2001. K-modes clustering.
Journal of classification 18, 1 (2001), 35-55.

[10] Jane Cleland-Huang and Bamshad Mobasher. 2008. Using data mining and

recommender systems to scale up the requirements process. In Proceedings of the

2nd international workshop on Ultra-large-scale software-intensive systems. ACM,

3-6.

Robert Feldt and Ana Magazinius. 2010. Validity threats in empirical software

engineering research-an initial survey.. In Seke. 374-379.

[12] Janey Gordon. 2007. The mobile phone and the public sphere: Mobile phone
usage in three critical situations. Convergence 13, 3 (2007), 307-319.

[13] Zhexue Huang. 1998. Extensions to the k-means algorithm for clustering large
data sets with categorical values. Data mining and knowledge discovery 2, 3 (1998),
283-304.

[14] Trupti M Kodinariya and Prashant R Makwana. 2013. Review on determining
number of Cluster in K-Means Clustering. International Journal 1, 6 (2013),
90-95.

[15] Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In [jcai, Vol. 14. Montreal, Canada, 1137-1145.

[16] Florian Kiinzler, Jan-Niklas Kramer, and Tobias Kowatsch. 2017. Efficacy of

mobile context-aware notification management systems: A systematic literature

review and meta-analysis. In 2017 IEEE 13th International Conference on Wireless

and Mobile Computing, Networking and Communications (WiMob). IEEE, 131-138.

Soo Ling Lim and Anthony Finkelstein. 2011. StakeRare: using social networks

and collaborative filtering for large-scale requirements elicitation. IEEE transac-

tions on software engineering 38, 3 (2011), 707-735.

Faisal Lugman and Martin Griss. 2010. Overseer: a mobile context-aware col-

laboration and task management system for disaster response. In 2010 Eighth

International Conference on Creating, Connecting and Collaborating through Com-

puting. IEEE, 76-82.

[19] Walid Maalej, Hans-Jorg Happel, and Asarnusch Rashid. 2009. When users
become collaborators: towards continuous and context-aware user input. In
Proceedings of the 24th ACM SIGPLAN conference companion on Object oriented
programming systems languages and applications. ACM, 981-990.

[20] Maleknaz Nayebi, Mahshid Marbouti, Rachel Quapp, Frank Maurer, and Guenther

Ruhe. 2017. Crowdsourced exploration of mobile app features: A case study of

the fort memurray wildfire. In Proceedings of the 39th International Conference on

Software Engineering: Software Engineering in Society Track. IEEE Press, 57-66.

Maleknaz Nayebi and Guenther Ruhe. 2017. Optimized functionality for super

mobile apps. In 2017 IEEE 25th International Requirements Engineering Conference

(RE). IEEE, 388-393.

Charith Perera, Chi Harold Liu Member, Srimal Jayawardena, and Min Chen.

2015. Context-aware computing in the internet of things: A survey on internet

of things from industrial market perspective. arXiv preprint arXiv:1502.00164

(2015).

Ronald W Perry. 2007. What is a disaster? In Handbook of disaster research.

Springer, 1-15.

[24] Raimundo Real and Juan M Vargas. 1996. The probabilistic basis of Jaccard’s
index of similarity. Systematic biology 45, 3 (1996), 380-385.

[25] Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmermann.
2014. Recommendation Systems in Software Engineering (2014 ed.). Springer Berlin
Heidelberg.

[26]] Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. 2007. Collaborative
filtering recommender systems. In The adaptive web. Springer, 291-324.

[27] Katrien Verbert, Nikos Manouselis, Xavier Ochoa, Martin Wolpers, Hendrik
Drachsler, Ivana Bosnic, and Erik Duval. 2012. Context-aware recommender
systems for learning: a survey and future challenges. IEEE Transactions on
Learning Technologies 5, 4 (2012), 318-335.

[28] Vaninha Vieira, Patricia Tedesco, and Ana Carolina Salgado. 2011. Designing

context-sensitive systems: An integrated approach. Expert Systems with Applica-

tions 38, 2 (2011), 1119-1138.

Norha M Villegas, Cristian Sanchez, Javier Diaz-Cely, and Gabriel Tamura. 2018.

Characterizing context-aware recommender systems: A systematic literature

review. Knowledge-Based Systems 140 (2018), 173-200.

[30] Jared Wade. 2012. Using mobile apps in disasters. Risk Management 59, 9 (2012),
6-8.

[31] Jun Ye. 2011. Cosine similarity measures for intuitionistic fuzzy sets and their

applications. Mathematical and computer modelling 53, 1-2 (2011), 91-97.

—

[11

[17

(18

[21

[22

[23

[29

https://www.4icu.org/
https://www.4icu.org/

	Abstract
	1 Introduction
	2 Related Works
	3 Dataset
	3.1 Mobile Emergency Apps' Features
	3.2 Universities' Context Attributes

	4 Methodology
	4.1 Context Attributes Selection
	4.2 Clustering
	4.3 Recommendation System
	4.4 Validation

	5 Results
	5.1 Assumption and Conjectures
	5.2 Evaluation of Conjectures

	6 Threats to Validity
	7 Conclusion and Future Work
	Acknowledgments
	References

